Trajectory Prediction by Generative Models for Optimization Based Planners

Thibault Barbié

Kyushu Institute of Technology Optimization of a given initial trajectory. It is a **prior** guess of a valid solution.

Problem: most OBP use a naive straight-line through configuration space as a prior.

They do not use previous knowledge.

Optimization based planner

Goal:

using a motion dataset to give an initial trajectory ξ_0 for a new planning problem x

N. Jetchev and M. Toussaint, "Trajectory prediction: learning to map situations to robot trajectories", in *Proceedings of the 26th annual international conference on machine learning*. ACM, 2009, pp. 449-456.

Motion dataset

Planning problem:

 $\boldsymbol{x} = [\boldsymbol{q}_{start}, \boldsymbol{q}_{goal}, \boldsymbol{obstacle}_1, \dots, \boldsymbol{obstacle}_K] \in X$

Trajectory:

 $\boldsymbol{\xi} = [\boldsymbol{q}_1, \dots, \boldsymbol{q}_N] \in \boldsymbol{\Xi}$

$$\mathcal{D}$$

$$d_1 = (x_1, \xi_1)$$

$$d_2 = (x_2, \xi_2)$$

$$\vdots$$

$$d_N = (x_N, \xi_N)$$

*q*_{start}

Problem: not a scalable method

Solution : learning on the dataset and **generating** new trajectories.

The methods **do not require the dataset** during runtime.

Mathematical representation of the problem

The dataset \mathcal{D} lives inside a manifold \mathcal{M} embedded in $X \times \Xi$.

Idea: approximating \mathcal{M} .

When x_{input} is given we generate ξ such as $d = (x_{input}, \xi) \in \mathcal{M}$.

Hypothesis:

 $p(\boldsymbol{d}|\mathcal{D})$ is an approximation of $p(\boldsymbol{d} \in \mathcal{M})$

We use the **approximation of the manifold** \mathcal{M} as a tool to find **suitable initial trajectories** $\boldsymbol{\xi}$ for a given planning problem \boldsymbol{x}_{input} .

Gaussian Mixture Model

$$p(\boldsymbol{d}|\mathcal{D}) = \sum_{i=1}^{m} \pi_{i} \mathcal{N} (\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})$$

For each gaussian we find the optimal $d = (x, \xi)$ such as $x = x_{input}$

Experiment

- Robot: 7 degree-of-freedom industrial arm
- Optimizer: STOMP motion planner
- Dataset length: 100,000
- Planning problem: moving from above the obstacle to under the obstacle

Experimental results

10

Experimental results

11

Problem:

The GMST method shows good results but is relatively **slow**.

It also **scales poorly** with the number of dimensions.

Solution:

Machine learning generative models :

- Variational Autoencoder (VAE)
- Generative Adversarial Networks (GAN)

It is not easy to know when a generative model has converged during training.

Generative Adversarial Networks

A GAN is made of two neural networks that are in an adversarial setting.

- A generator G
- A discriminator D

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log D(1 - D(G(z)))]$$

Conditional Generative Adversarial Networks

GAN generates data like the ones in \mathcal{D} .

Problem : we do not want to generate new problems but want to generate solutions *conditionned* on a given problem.

Conditional GAN (CGAN) :

14

Trajectory prediction by a CGAN

Experiment results

Collision-free trajectories [%]		Linear	Nearest Neighbor	GMST	CGAN
2D	4 obstacles	96.8	34.4	90.2	61.9
20D	400 obstacles	74.5	98.9		63.2

Conclusion

Trajectory prediction :

is **efficient**, helps to **reduce the computation time** and gives **better initial trajectory** to be optimized.

GMST method :

easy to use
model too simple
takes time to compute

CGAN method :

fast
high quality trajectory generation
difficult to use

Both methods **do not require** the dataset at runtime.

Future work :

automatic data gathering continuous learning