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Optimization Based Planners (OBP)

Optimization based planner

Optimization of a given initial trajectory. It is a 
prior guess of a valid solution.

Problem: most OBP use a naive straight-line
through configuration space as a prior.   

They do not use previous knowledge.   
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Goal:

Classical linear initialization Predicted trajectory

𝝃𝑓𝑖𝑛𝑎𝑙

𝝃0

𝝃𝑓𝑖𝑛𝑎𝑙

Trajectory Prediction 3

N. Jetchev and M. Toussaint, “Trajectory prediction: learning to map situations to robot trajectories”, in Proceedings of the 26th

annual international conference on machine learning. ACM, 2009, pp. 449-456.

𝝃0

using a motion dataset to give an initial trajectory 𝝃𝟎 for a new planning problem 𝒙



Motion dataset 4
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𝒅1 = (𝒙1, 𝝃1)
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𝒟

⋮

Planning problem:

Trajectory:

𝝃 = [𝒒1, … , 𝒒𝑁] ∈ Ξ

𝒙 = [𝒒𝑠𝑡𝑎𝑟𝑡, 𝒒𝑔𝑜𝑎𝑙, 𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆1, … , 𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆𝐾] ∈ 𝑋



Problem: not a scalable method

𝒙

Ƹ𝑖 = argmin𝑖 𝒙 − 𝒙𝑖 𝝃0 = 𝝃 Ƹ𝑖

𝝃𝑓𝑖𝑛𝑎𝑙 = optim(𝝃0)

Retrieving

Optimization
𝝃𝑓𝑖𝑛𝑎𝑙
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𝝃0
𝒅1 = (𝒙1, 𝝃1)

𝒅2 = (𝒙2, 𝝃2)

𝒅𝑁 = (𝒙𝑁, 𝝃𝑁)

𝒟

⋮



Solution : learning on the dataset and generating new trajectories.

Dataset 𝒟

𝑓𝜽(𝒙)
Optimization 

Based Planner
𝒙

𝝃𝟎
𝝃𝑓𝑖𝑛𝑎𝑙

𝜽

Idea 6

𝜽 : vector of parameters learned 
on the dataset

The methods do not require the dataset during runtime.



The dataset 𝒟 lives inside a 
manifold ℳ embedded in 𝑋 × Ξ. 

Idea: approximating ℳ. 

When 𝒙𝑖𝑛𝑝𝑢𝑡 is given we generate 𝝃

such as 𝒅 = 𝒙𝑖𝑛𝑝𝑢𝑡 , 𝝃 ∈ ℳ.

Trajectory 𝝃

𝑥𝑖𝑛𝑝𝑢𝑡

Mathematical representation of the problem 7

ℳ

Planning problem 𝑥

We use the approximation of the manifold ℳ as a tool to find suitable 
initial trajectories 𝝃 for a given planning problem 𝒙𝑖𝑛𝑝𝑢𝑡. 

p(𝒅|𝒟) is an approximation of p(𝒅 ∈ ℳ)

Hypothesis:



p 𝒅 𝒟 = 

𝑖=1

𝑚

𝜋𝑖𝒩 (𝝁𝑖 , 𝚺𝑖)

Gaussian Mixture Model

𝒩(𝝁1, 𝚺1)

𝒙𝑖𝑛𝑝𝑢𝑡
𝒩(𝝁2, 𝚺2)

𝒩(𝝁𝑚, 𝚺𝑚)

⋮

𝝃1

𝝃2

𝝃𝑚

max
𝝃𝑚𝑎𝑥

For each gaussian we find the optimal 𝒅 = (𝒙, 𝝃) such as 𝒙 = 𝒙𝑖𝑛𝑝𝑢𝑡
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𝑥

Trajectory 𝝃

𝑥𝑖𝑛𝑝𝑢𝑡

ℳPlanning 
problem



Planning problem: moving from above the 
obstacle to under the obstacle

Robot: 7 degree-of-freedom industrial arm

Optimizer: STOMP motion planner

Dataset length: 100,000 
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Neural network generative models 12

Solution:

• Variational Autoencoder (VAE)
• Generative Adversarial Networks (GAN)

Problem:

It is not easy to know when a generative model has converged during training.

The GMST method shows good results but is relatively slow.

It also scales poorly with the number of dimensions.

Machine learning generative models :



Generative Adversarial Networks 13

A GAN is made of two neural networks that are in an adversarial setting.

• A generator G
• A discriminator D

D G

Generates data to
learn to fool D

Learns to discriminate between 
true data and fake data

𝒟

min
𝐺

max
𝐷

𝑉 𝐷, 𝐺 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝔼𝑧~𝑝𝑧(𝑧) log 𝐷 1 − 𝐷(𝐺(𝑧))



Conditional Generative Adversarial Networks 14

GAN generates data like the ones in 𝒟.

Problem : we do not want to generate new problems but want to 
generate solutions conditionned on a given problem.

Conditional GAN (CGAN) :

𝒙

𝝃

Fully connected layer

ReLU

512 2

𝒙

𝒛

Fully connected layer

ReLU

Sigmoid

100 100 |Ξ|

Discriminator Generator



Trajectory prediction by a CGAN 15



Experiment results 16

Collision-free trajectories [%] Linear Nearest Neighbor GMST CGAN

2D       4 obstacles 96.8 34.4 90.2 61.9

20D     400 obstacles 74.5 98.9 63.2



Conclusion 17

Trajectory prediction :

〇 easy to use
× model too simple
× takes time to compute

automatic data gathering
continuous learning

is efficient, helps to reduce the computation time and gives better initial trajectory to 
be optimized.

GMST method :

〇 fast
〇 high quality trajectory generation
× difficult to use

CGAN method :

Future work :

Both methods do not require the dataset at runtime.


