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Optimization Based Planners (OBP) 2

Optimization of a given initial trajectory. It is a
prior guess of a valid solution.

Problem: most OBP use a naive straight-line .

through configuration space as a prior. .

They do not use previous knowledge.

Optimization based planner



Trajectory Prediction

Goal:

using a motion dataset to give an initial trajectory &, for a new planning problem x

f final Ef inal

Classical linear initialization Predicted trajectory

N. Jetchev and M. Toussaint, “Trajectory prediction: learning to map situations to robot trajectories”, in Proceedings of the 26t"
annual international conference on machine learning. ACM, 2009, pp. 449-456.



Motion dataset =

Planning problem:

X = [Qstart: goal, 0bstacley, ..., obstacleg] € X

Trajectory:
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Traditional trajectory prediction
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Problem: not a scalable method



Idea ¢

Solution : learning on the dataset and generating new trajectories.

Dataset D
0 : vector of parameters learned
on the dataset
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The methods do not require the dataset during runtime.



Mathematical representation of the problem

The dataset D lives inside a Planning problem x
manifold M embedded in X X Z. 1

Idea: approximating M.

When X;,,,,,.¢ is given we generate §  Finpur[ - @EEsEgs - - - =S amsan Ry - - - - - -
suchasd = (xl-nput, E) eEM.

Hypothesis:
p(d|D) is an approximation of p(d € M)

Trajectory f

We use the approximation of the manifold M as a tool to find suitable
initial trajectories § for a given planning problem x;,,,,,,;.



Gaussian Mixture Model
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For each gaussian we find the optimal d = (x, §) such as x = Xxjp¢
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Robot: 7 degree-of-freedom industrial arm
Optimizer: STOMP motion planner
Dataset length: 100,000

Planning problem: moving from above the
obstacle to under the obstacle




Experimental results
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Experimental results
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Neural network generative models

Problem:
The GMST method shows good results but is relatively slow.

It also scales poorly with the number of dimensions.

Solution:
Machine learning generative models :
e Variational Autoencoder (VAE)

 Generative Adversarial Networks (GAN)

It is not easy to know when a generative model has converged during training.



Generative Adversarial Networks

A GAN is made of two neural networks that are in an adversarial setting.

* Agenerator G
e Adiscriminator D

minmax V(D, G) = Ex-p,.,(x)[10g D ()] + Ezp,(5)[log D(1 = D(G(2)))]

Learns to discriminate between
true data and fake data

N
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Generates data to
learn to fool D



Conditional Generative Adversarial Networks

GAN generates data like the ones in D.

Problem : we do not want to generate new problems but want to
generate solutions conditionned on a given problem.

Conditional GAN (CGAN) :
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Discriminator Generator



Trajectory prediction by a CGAN




Experiment results
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2D 4 obstacles 96.8 34.4 90.2 61.9

20D 400 obstacles 74.5 98.9 63.2



Conclusion

Trajectory prediction :

is efficient, helps to reduce the computation time and gives better initial trajectory to
be optimized.

GMST method : CGAN method :
O easy to use O fast
X model too simple O high quality trajectory generation
X takes time to compute X difficult to use

Both methods do not require the dataset at runtime.

Future work :

automatic data gathering
continuous learning



