Policy learning from demonstration for autonomous inspection

Assia Benbihi, Matthieu Geist, Cédric Pradalier

Use Case: Learn inspection utility function policy from expert inspection examples

1. Learning from demonstration

Gather utility function examples following an inspection pattern (e.g. Exterior Art Gallery Problem) The policy is modeled by a convolutional neural network.

The network produces a utility function with the same maxima patterns

Autonomous feature extraction and utility function parametric learning

Encoder-Decoder architecture

The **encoder** autonomously extracts relevant features from the inspection examples into a reduced representation space. The **decoder** part generates an image from this reduced feature vector.

Data representation

Instead of hand-crafting a utility function, we learn it from demonstration. This method is evaluated on three inspection patterns. Utility function are represented with saliency maps.

 Π_1

Vertices

Π_2 \prod_{2} Middle edge **NP-hard Fortress**

Geometric similarity metrics

Semantic similarity metrics

Equality between inspection results when utility functions are different. Specific to the inspection pattern.

Example: Pattern Π_3 aims at covering the exterior perimeter.

The relevant metrics are cov_{model} , $cov_{regular}$. p_X perimeter covered by X with $X \in \{model, expert, regular\}$.

*p*_{model} COV_{model} *p*_{expert}

Experiments and results

Simulation results

Geometric similarity increases as the inspection pattern becomes simpler. For Π_3 , semantic similarity achieves 85% when even geometric similarity is low.

Semantic similarity

0<recall<0.2 0.2<recall<0.4</p>

0.4<recall<0.6

Experimental results

Policies trained on noisy simulation data maintain at least half of the performance on real data.

Simulation: Infer on simulated polygons Eval 1: Inference on polygon approximation of real objects

Eval 2: Inference on real object contours

