Policy learning from demonstration for autonomous inspection
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Use Case: Learn inspection utility function policy from expert inspection examples

1. Learning from demonstration 2. Train utility function policy 11
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example

The policy is modeled by a convolutional
neural network.

Gather utility function examples
following an inspection pattern

(e.g. Exterior Art Gallery Problem) patterns

Autonomous feature extraction and utility function parametric learning

Encoder-Decoder architecture Data representation

Instead of hand-crafting a utility
function, we learn it from

The encoder autonomously
extracts relevant features
from the inspection examples into a reduced
representation space. The decoder part
generates an image from this reduced feature
vector.

represented with saliency maps.
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Inspection pattern.

3. Inference
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The network produces a utility
function with the same maxima

Equality between inspection results when
utility functions are different. Specific to the

demonstration. This method is
evaluated on three inspection
atterns. Utility function are
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Experiments and results

Simulation results Geometric similarity
Geometric similarity increases as I, 1 [13
the inspection pattern becomes
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Experimental results '
Policies trained on noisy simulation T
data maintain at least half of the -
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Simulation: Infer on simulated polygons
Eval 1: Inference on polygon approximation of N g .
real objects T g g,
Eval 2: Inference on real object contours -
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overage ratios. Polygon number = 3545

Coverage ratios. Polygon number = 3545
cent of instances in each recall interval =[22,13,14]
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