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MODELING AND NOTATION




Car-Like Robot Rear-Wheel Driving

X cos 0 0
v|_ sin O - 0 é
0 tan @/ Lwp 0
¢ 0 1
| (1)
L rs > Where v and ¢ are the driving and
x

o steering velocities.

Figure: Kinematic model diagram for a
car-like rear-wheel driving robot

E cenreaie 92N 3
NANTES AN



Experimental Setup

Velocity, direction of travel, steering and turning signals can be
controlled by computer.

Velodyne |
VLP-16

Fish eye
cameras

2D LiDAR

Figure: Robotized Renault ZOE
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Multi-sensor modeling

In a static environment, the sensor feature deriva-
tive can be expressed as *:

$i=Livi= L; iwm Vm (€))
(d;x6)(6x6)(6x1)

Ly ... 0 w,,

Li =LW, =| @ . : (3)
- (dx6) k
e 0 ... Lg Wi
|< ‘ object (dx6k) (60
f i Ve §=Lsvy (4)
‘FO signal interest

Under a planar world assumption:
Figure: Multi-sensor model

s$i=L;v; = L, iwmr Vi, (5)
(d;x3) (3x3) (3x1)

— T
where vy, = [vy,,, vy, 0]

!Kermorgant and Chaumette, “Dealing with constraints in sensor-based robot control”
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Multi-sensor modeling

Assuming v,, = 0 (no slipping nor skidding)

v =[ovy,, Q]T (6)
dim(Ly) = (d X 2)

s > where vy, = v and Ly is the corresponding

%o sub-matrix extracted from Ls, .

Figure: Kinematic model diagram for a
car-like rear-wheel driving robot
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Weighted error

The weighted multi-sensor error signal is defined as:
ey = He (7)

where e = s — 5" is the difference between the current sensor signal s
and its desired value s* and H is a diagonal positive semi-definite
weighting matrix that depends on the current value of s. Its associated
interaction matrix is Ly = HL;.
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PERCEPTION




Perception

Filtering and Segmentation Orientation Bounding box

Sensor fusion : ) " :
downsampling and clustering extraction extraction
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Extraction of empty parking place

Spot Length
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Parking spots

Traffic lane

——

Traffic lane

Figure: Parking spot model for reverse || parking maneuvers

Traffic lane

———

Figure: 1 parking spot model

Figure: Parking spot model for forward || parking maneuvers

Table: Pair of points through which each line passes

Line | Perpendicular | Parallel (reverse) | Parallel (forward)
L1 | (ps.'po) (. 'po) (5. 'po)
L (p1,'pa) (p3,'pa) (p1'p2)
L ('p3,'pa) (p1'pa) (p1.'pa)
Ly | (pi'po) (p1.p2) (3. 'pa)
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INTERACTION MODEL




Interaction Model

The sensor signals s;, and reduced interaction matrix L;, are defined
] ]

respectively as:

s, = [0, 'w@,mE)  ©

0 0 iE]‘(Z)
L,=| 0 0 ~'w(D)
w2 w1 0
)

Figure: Sensors’ configuration and sensor
features
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Task sensor features

Task sensor features

' = [siy,,si,, " (10)

s! is obtained from S for forward maneu-
vers and from S, for reverse ones.
The corresponding interaction matrix is
defined as:
*
Ly,+L r

L' = — (11)

where Ly = [L; L ]T and L is equal
to the value of L, at the desired pose.

Approximation with

L+L"

Figure: Sensors’ configuration and
sensor features
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Weighting of the task sensor features

The associated weighting matrix H; is defined
as:

H' = diag(h!, ht, hi, nl, ht, ht) (12)

where the values /) and h) are constant while
the values of h! Vi = 1,2,4,5 are computed
using the following smooth weighting func-

tion:

Figure: Sensors’ configuration and A i
sensor features

s

Figure: Weighting function h;
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Constraints

Constrained sensor features

The corresponding interaction matrix:

c _ T c _ T
s = [53/ co0oypg SB] (13) L - [L3/ cey LS] (14)
Table: Constraints features for L maneuvers
S; Reverse Forward
s3 | Pha(3),7ya, %djar, I *vs
54 - Thy(3)
s5 *hs(3) [Phy(3),5h4(3), > |
s6 [®hy(3), °h3(3)]” -
Table: Constraints features for || maneuvers
S; Reverse Forward
3 | Py, diay IT | Pys diar, |7
sa Py, o] Thy(3)
s5 - °hy(3)
s6 ®hy(3) -
sy h3(3) h3(3)
Figure: Radial constraints: all the radii sg Sh3(3) h3(3)

define concentric arcs with center at ICR
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Constraints (reverse perpendicular case)

S,

0,

) 777
ZOE/bgse Ainl

Constrained sensor features

c _ T
s© = [s3, s5, Se] (15)
The corresponding interaction matrix:

L° = [Ls, Ls, Le]|” (16)

Figure: Constraints required for reverse L parking
maneuvers
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CONTROL




Control

v = argmin||LLv + Aek|[?

st. Av<b (17)

with:
A =[L¢,-L°]" (18)
b = [a(s” —5),—a(s” —s)] (19)

where a is a gain constant, A is the control gain and [s¢ , s¢"]is the desired interval in

which we want to keep s°.
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Bounding the control signals

The control signals v and ¢ and their increments are
bounded as shown below:

[v] < Vmax (20)
|(P| < Qmax (21)

(V-1 = Agec) < v < (V-1 + Agce) (22)

(¢’n—l - A(p) <dn < ((Pn—l + A(p) (23)

0 dy, d,,,(T=0)
Figure: Distance to stop line

Distance to stop line

Figure: Deceleration profile
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RESULTS



Convergence Analysis - Exhaustive Simulations

Convergence Analysis - Reverse Perpendicular Case (9T=0= 0°)
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Figure: Reverse L case, spot length = 4m and width = 2.7m s
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Convergence Analysis - Exhaustive Simulations

Convergence Analysis - Forward Perpendicular Case (9T=0= 0°)
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Figure: Forward L case, spot length = 4m and width = 2.7m
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Convergence Analysis - Exhaustive Simulations

Convergence Analysis - Reverse Parallel Case (GT:O: 0°)
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Figure: Reverse || case, spot length = 7.5m and width = 2.3m
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Convergence Analysis - Exhaustive Simulations

Convergence Analysis - Forward Parallel Case (GT:O: 0°)

101 >0.35
8r 03
6 -
0.25
4+
0.2
> 2t “E
{015
O -
10.1
_2 -
al 10.05

-12 -10 -8 -6 -4 -2 0 2 4

25

CENTRALE
NANTES



Real Experimentation

Figure: Reverse L parking maneuver (https://youtu.be/Lms-pFiV5pA)
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Convergence Analysis - Real Experimentation

The initial position of the vehicle (denoted by a black X) lies inside of
the region of attraction (ROA).

Convergence Analysis - Reverse Perpendicular Case (0T=0: 12.6°)
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E CENTRALE |SM2,'\ Figure: Reverse L case, spot length = 4.2m and width = 2.8m 27



Real Experimentation - Parking Maneuver Signals
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Figure: Reverse L parking maneuver signals
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Conclusions and Future Work

Conclusions:

O The presented technique has been proven to be very versatile and
robust.

O The regions of attraction (ROAs) are quite extensive and their
boundaries seem natural.

Future work:

O Validate the approach for other parking scenarios by real
experimentation.

O To be able to park with multiple maneuvers.
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