

## JJCR2017

## From the analysis of image-guided biopsies to the specifications of a new robotic system and its associated workflow

Antoine PFEIL, Arnaud BRUYAS, Quentin BOEHLER, Benoît WACH, Laurent BARBE, François GEISKOPF and Pierre RENAUD AVR-ICUBE, Strasbourg, France



### **1. Medical context**



Traditional surgery

Laparoscopy

Interventional radiology

#### Trend:

Less invasive procedures

#### But also:

- Early and focal treatment
- Adapt treatment to pathology → biopsies: key for local information about tumour

**1. Context : interventional radiology** 

- Use images to guide the needle
- Good tumour visualization with the following imaging modalities:







### **1. Context : interventional radiology**


- Issues
  - CT, CBCT: X-ray exposure
  - MRI: patient access

Procedures are

- Difficult to perform
- Experience-dependent
- Risky for the doctor

 $\rightarrow$  Robotic assistance of great interest





## 1. State of the art and goals

- Most systems are designed for CT
- Few are CT and MRI-compatible
- None to assist for CT, MRI and CBCT procedures
- Radiologist's feedback: existing systems lack of efficiency because of the important modification of the manual practice

#### Goal

- To build a single system for the 3 modalities
- To make it efficient by staying close to the manual gesture

#### Method

- Analysis of manual gestures for the identification of:
  - the required functionalities
  - their associated workflow
- Validation and refinement of functionalities and workflow through pre-clinical experiment



Innomotion, INNOMEDIC GmbH, Herxheim, Germany



## 1. Methods

#### Interviews

- France, Germany, Switzerland
- Interview grid: difficulties, training time, expected added-value of robotics + feedback, trends...

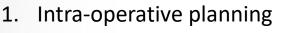
#### **Observation of procedures**

- France, Germany
- > 35h of observations on MRI, CT, CBCT
- Observation grid
  - Qualitative analysis: difficulty of task, haptic feeling, ...
  - Quantitative analysis: procedure times, target size, number of try & error





## 1. Methods


#### **Prototype evaluation**

- Strasbourg
- CBCT, on phantom
- Robotic insertion
- Accuracy, X-ray exposure, procedure time
- Feedback from radiologist





### 2. Results: Manual biopsy procedure



- 2. Determination of the entry point on the patient  $\rightarrow$  Easy task
- 3. Patient preparation.
- 4. Superficial anaesthesia.
- 5. Deep anaesthesia
- 6. Placement of coaxial needle in the tumour
- 7. Biopsy puncture.

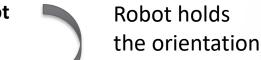
\_→ Difficult task



## 2. Results: difficulties in the manual procedure

| 0 | Imager | Difficulties                                                                                                                                                                                                       |
|---|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | СТ     | <ul> <li>Orientation and insertion</li> <li>No real-time imaging (X-rays)</li> <li>Iterative manipulation/imaging → difficult, risky</li> </ul>                                                                    |
|   | CBCT   | <ul> <li>Orientation         <ul> <li>Real-time imaging</li> <li>Needle manipulation with pliers → lack of dexterity</li> <li>X-ray exposure</li> </ul> </li> <li>Insertion: no real-time visualization</li> </ul> |
|   | MRI    | <ul> <li>Orientation and insertion</li> <li>Real-time imaging</li> <li>Patient access → difficult to be precise</li> <li>Fatiguing position</li> </ul>                                                             |




### 2. Results: Robotized workflow

- 1. Intra-operative planning
- 2. Determination of the entry point on the patient
- 3. Patient preparation
- 4. Superficial anaesthesia
- 5. Robot installation

Positioning: manual

6. Deep anaesthesia

Orientation: remote manipulation with robot Insertion: manual



- 7. Placement of coaxial needle in the tumour
  - Orientation: remote manipulation with robot Insertion: remote manipulation with robot information feedback on membrane puncturing trajectory adjustement during insertion
- 8. Biopsy puncture



## **2.** Robotized procedure: added-value

| <image/> | Imager | Robotized procedure                                                                                                                                                                       |
|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | СТ     | <ul> <li>Use of CT fluoroscopy without exposure:</li> <li>Real-time visualization during orientation and insertion</li> </ul>                                                             |
|          | СВСТ   | <ul> <li>Orientation         <ul> <li>Fine needle manipulation</li> <li>Less X-ray exposure</li> </ul> </li> <li>Insertion: real-time visualization without exposure to X-rays</li> </ul> |
|          | MRI    | <ul> <li>Orientation and insertion         <ul> <li>Accessibility issue solved by telemanipulation</li> <li>Improved dexterity</li> <li>Comfortable position</li> </ul> </li> </ul>       |

## **ICUJSE** 2. Validation and refinement of functionalities



Validated points

- Positioning
- Remote orientation and insertion

To be improved

Intuitive control of needle orientation

## Conclusion

- Identification of difficulties and expected added-value of robot
- Identification and quantification of required functionalities for a use in CT, MRI, CBCT
- Definition of the associated robotized workflow for CT, MRI, CBCT in collaboration with the radiologists
- Validation and refinement through preclinical experiment



### **Future work**

- Improvement of a prototype previously developed in the lab
- Design of a new prototype taking into account sterilization and safety
- Integration of information feedback on membrane puncturing
- Integration of trajectory correction functionality



## Thank you for your attention.

## Questions?

06.11.2017.